Energy eigenvalues and Einstein coefficients for the one-dimensional confined harmonic oscillators

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys. A: Math. Gen. 354903
(http://iopscience.iop.org/0305-4470/35/23/307)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.107
The article was downloaded on 02/06/2010 at 10:11

Please note that terms and conditions apply.

# Energy eigenvalues and Einstein coefficients for the one-dimensional confined harmonic oscillators 

G Campoy $^{1}$, N Aquino $^{2}$ and V D Granados ${ }^{3}$<br>${ }^{1}$ Departamento de Investigación en Física, Universidad de Sonora, Apartado Postal A-88, 83000 Hermosillo, Sonora, México<br>${ }^{2}$ Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, 09340 DF, México<br>${ }^{3}$ Departamento de Física, Esc. Sup. de Física y Matemáticas, IPN, Edif 9, Unidad Prof. 'ALM', Col. Lindavista, 07738 DF, México<br>E-mail: naa@xanum.uam.mx

Received 14 October 2001, in final form 21 February 2002
Published 31 May 2002
Online at stacks.iop.org/JPhysA/35/4903


#### Abstract

We compute the energy eigenvalues and the Einstein coefficients for a onedimensional harmonic oscillator confined in a box of impenetrable walls as a function of box size, and an asymmetry parameter. The energy eigenvalues that we obtain for the symmetric and unsymmetric confinement are more accurate than those reported previously. To compute eigenvalues and eigenfunctions we use two different approaches known to be very accurate. With respect to the unbounded harmonic oscillator we find transitions that are now allowed due to the confinement to the box. When the confinement is asymmetric the transition spectra become more complex, since the transition probabilities show a strong variation with box size.


PACS number: 03.65.Ge

## 1. Introduction

The study of confined systems has been used for quite some time to understand different physical phenomena, such as the behaviour of systems under the action of an external high pressure [1]. In this sense one-dimensional models have provided a natural starting point to model the effects of confinement since they are quite simple, but nevertheless can display interesting behaviour without the need to resort to complex situations. For example, in a recent work, Bhattacharya and Mukhopadhyay [2] study the force $F(L)=-\mathrm{d} E(L) / \mathrm{d} L$ necessary to confine a particle in a one-dimensional box of length $L$, which at the same time is subjected to a potential which can be either a harmonic oscillator potential $x^{2}$, or a pure anharmonic $x^{4}$ potential.

The harmonic oscillator can be confined in a symmetrical or an asymmetrical way inside a box. The first case is the most familiar and therefore is one of the most often studied models [1, 3-10]. It has been in vogue since the 1940s starting with the works by Kotari and Auluck [3], Auluck [4] and Chandrasekhar [5] as a model in the study of some properties of dense stars, white dwarfs and galactic clusters. It has also been used to analyse electric and magnetic properties [6], as well as the specific heat of metals under high pressure [7]. In one approach, the Schrödinger equation for the symmetrically confined harmonic oscillator was solved in terms of the Kummer function $M(a, b, z)$ [8]; imposing the boundary conditions one obtains a transcendental equation for the energy eigenvalues that must be solved numerically [9]. Other authors have solved the Schrödinger equation, for this symmetric case, following other approaches such as perturbation theory [8, 10-12], Padé approximants [8], direct diagonalization of the Hamiltonian [8], or using Numerov's method [13]. In view of all these works we see that the study of an asymmetrically confined one-dimensional harmonic oscillator has not been very common, even though in reality the asymmetric confinement should be more usually realized. In this case the Schrödinger equation is

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} x^{\prime 2}}+\left(E-\frac{1}{2}\left(x^{\prime}-d\right)^{2}+V\left(x^{\prime}\right)\right) \psi=0 \tag{1a}
\end{equation*}
$$

where

$$
V\left(x^{\prime}\right)= \begin{cases}+\infty, & \left|x^{\prime}\right| \geqslant R  \tag{1b}\\ 0, & \left|x^{\prime}\right|<R .\end{cases}
$$

Here, $2 R$ is the length of the box and $d$ is the location of the minimum of the harmonic oscillator potential. The distances are measured in units of $(\hbar / m \omega)^{1 / 2}$, and the energy unit is $\hbar \omega$. One of the first studies of this problem is due to Vawter [14], who developed an approximate solution using the WKB method. He found the values of the energy for two limiting situations:
(i) for the lower states, where the classical turning points are located inside the well $E_{n} \simeq\left(n+\frac{1}{2}\right)$, and
(ii) for highly excited states, where the classical turning points of the oscillator are well outside the box, where the particle can no longer reach them, the approximate values are then $E_{n} \simeq\left[(n+1)^{2} \pi^{2}\right] / R^{2}$.
Vawter [14] also obtained the solution of Schrödinger equation (1) in the form of a power series expansion in $x^{\prime}$ and calculated the expansion coefficients from a recurrence relation, from which he determined the energy eigenvalues numerically. A different approach was employed by Fernández and Castro [15] who used the hypervirial formulae for enclosed quantum systems. Aquino et al [11] and Fernández [12] solve this problem using first- and second-order perturbation theory, respectively; both methods give results that are valid only for boxes with $R \leqslant 1.5$. The rest of this paper is organized as follows. In section 2 we present two different methods to solve the Schrödinger equation, and we obtain the energy eigenvalues for the symmetric and the asymmetric confined case. In section 3 we compute the Einstein coefficients for the confined harmonic oscillator as a function of the box size for both cases. Finally, in section 4 we present our conclusions.

## 2. The energy eigenvalues

We used two different methods to find the energy eigenvalues and eigenfunctions of the onedimensional confined oscillators. The first method is based on a power series expansion of
the wavefunction itself [17-21], while the second one is completely numeric in nature [16] and is based on the Runge-Kutta method of integrating ordinary differential equations. The first method is very efficient when the values of the wavefunction and its derivative are well known at the origin, and it was successfully applied to the problem of a confined hydrogen atom [19, 21], a three-dimensional harmonic oscillator [20, 21], a two-dimensional confined hydrogen atom [21] and also in the study of the inversion of $\mathrm{NH}_{3}$ [22] where the inversion potential was modelled by a polynomial of degree 20 . The second method is more efficient for the study of asymmetric potentials, although it can also be applied to study systems with symmetrical potentials. It was also applied to compute the energy eigenvalues of the Mitra potential [16] and the inversion of $\mathrm{PH}_{3}$ [23].

To keep the presentation of this work self-contained, but brief, we only mention the main characteristics of both methods. Clearly, in the original papers the reader can find more detailed explanations.

In order to solve the Schrödinger equation (1a) it is advisable to make the following change of variable:

$$
\begin{equation*}
x=x^{\prime}-d \tag{2}
\end{equation*}
$$

Equation (1a) is then transformed to a Schrödinger equation for the harmonic oscillator centred at the origin:

$$
\begin{equation*}
-\frac{1}{2} \psi^{\prime \prime}+\frac{1}{2} x^{2} \psi(x)=\epsilon \psi(x) \tag{3}
\end{equation*}
$$

and the boundary conditions are now given by

$$
\begin{equation*}
\psi(a)=\psi(b)=0 \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
a=-(R+d), \quad b=R-d \tag{5}
\end{equation*}
$$

One of the main features of the method is the assumption that $\psi$ must be a function of both position and energy, i.e.

$$
\begin{equation*}
\psi=\psi(x, \epsilon) . \tag{6}
\end{equation*}
$$

The derivative of equation (3) with respect to the energy is given by

$$
\begin{equation*}
\partial \psi^{\prime \prime} / \partial \epsilon=\left[x^{2}-2 \epsilon\right](\partial \psi / \partial \epsilon)-2 \psi . \tag{7}
\end{equation*}
$$

Starting with an initial guess for the energy, (3) and (7) must be solved for $\psi$ and $\partial \psi / \partial \epsilon$. The correction to the energy is obtained through the Newton-Raphson method [24,25].

### 2.1. The symmetric confinement

In this case, $d=0$ and equation (5) is then

$$
a=-R, \quad \text { and } \quad b=R
$$

The symmetry of the problem simplifies the computation, since it is sufficient to consider only the wall on the right-hand side. The confinement of the system introduces an impenetrable barrier at $x_{0}=b$ and, therefore, the function $\psi$ must vanish there:

$$
\begin{equation*}
\psi\left(x_{0}, \epsilon_{\text {exact }}\right) \equiv 0 \tag{8}
\end{equation*}
$$

The problem of finding the energy eigenvalues of equation (3) has now been reduced to finding the zeros of $\psi$ with respect to $\epsilon$ at $x_{0}$. One starts by making an initial guess for the energy, $\epsilon_{i}$, equations (3) and (7), and then solving numerically to find $\psi$ and $\partial \psi / \partial \epsilon$, respectively. A correction for the energy is then computed through the Newton-Raphson method [23, 24]:

$$
\begin{equation*}
\epsilon_{i+1}=\epsilon_{i}-\psi\left(x_{0}, \epsilon_{i}\right) /\left[\partial \psi\left(x_{0}, \epsilon_{i}\right) / \partial \epsilon\right] . \tag{9}
\end{equation*}
$$

With this new value of the energy we iterate equations (3) and (7) until a final eigenvalue $\epsilon_{f}$ is found with the desired accuracy. In this approach the wavefunction is expressed as a Taylor series around $x=0$, where its initial value is known:

$$
\begin{equation*}
\psi(x)=\sum_{k} T_{k} \tag{10a}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{k}=\left(\psi^{(k)}(0) / k!\right) x^{k} \tag{10b}
\end{equation*}
$$

To evaluate this expression we take the $p$ th derivative of equation (3) with respect to $x$ and use the well-known formula for the derivative of a product, together with equations ( $10 a$ ) and (10b). Finally, we obtain that

$$
\begin{equation*}
T_{p}=x^{2}\left(T_{p-2} x^{2}-2 \epsilon T_{p}\right) /[(p+1)(p+2)] . \tag{11}
\end{equation*}
$$

Hence, the wavefunction can be calculated directly using (10a), and also $\partial \psi / \partial \epsilon$ :

$$
\begin{equation*}
\partial \psi / \partial \epsilon=\sum_{m} \partial T_{m} / \partial \epsilon=\sum_{p} \dot{T}_{p} \tag{12}
\end{equation*}
$$

where $\dot{T}_{p}$ denotes the derivative of $T_{p}$ relative to the energy:

$$
\begin{equation*}
\dot{T}_{p}=x^{2}\left(\dot{T}_{p-2} x^{2}-2 \epsilon \dot{T}_{p}-2 T_{p}\right) /[(p+1)(p+2)] \tag{13}
\end{equation*}
$$

Using equations (10)-(13) we can build any eigenstate using the initial conditions. Due to the symmetry of the system the states have a well defined parity. Then, for the even states $\psi_{n}(0)=1$ and $\psi_{n}^{\prime}(0)=0$ and for odd states $\psi_{n}(0)=0$ and $\psi_{n}^{\prime}(0)=1$. Once the energy eigenvalue $\epsilon_{n}$ has been obtained, we can compute the expansion coefficients for the wavefunction, substituting $\epsilon_{n}$ in equation (11) and evaluating $T_{p}$ at $x=1$. Thus, we have that

$$
\begin{equation*}
\psi_{n}(x)=\sum_{m} T_{m}\left(x=1, \epsilon_{n}\right) x^{m} \tag{14}
\end{equation*}
$$

A major advantage of this method is that the computation of the energy eigenvalues is not only very accurate, but also quite fast. Table 1 shows the energy eigenvalues $\epsilon_{n}$ for ground state and first excited state for different values of the size of the box. We compare our results, for symmetric confinement, with those of Aguilera-Navarro et al [8], obtained by a direct diagonalization of the Hamiltonian in the basis set of a free particle in a box. Note that the results of [8] only provide good approximations for small boxes and only for the lowest states, but they become less accurate when the box size increases. This behaviour is easily observed for the states $E_{0}, E_{1}, E_{2}$ and $E_{3}$; at $R=6$, the values reported [8] are lower than the exact ones for the free harmonic oscillator. With the method proposed here, it is possible to obtain the energy eigenvalues with a high degree of precision: all digits shown in table 1 are significant. The results reported in [13] agree with those of table 1 up to the first 9 digits after the decimal point and, therefore, showing that their results are also a good approximation. It can be observed that, for small box sizes, $R<1.5$, all the energy levels are close to the respective energy eigenvalues of the free particle in a box of the same size [11]; in this case, the harmonic oscillator potential is just a perturbation. On the other hand, for $R>5$ the energy levels approach the corresponding eigenvalues of the unconfined harmonic oscillator, as expected.

Table 1. Energy eigenvalues for the ground state and a few excited states of a symmetrically confined harmonic oscillator. The size of the box is $2 a$, the length unit is $\sqrt{\hbar / m \omega}$ and the energy unit is $\hbar \omega$.

| $a$ | $E_{0}[8]$ | $E_{0}$ (ours) | $E_{1}[8]$ | $E_{1}$ (ours) |
| :--- | :---: | :--- | :--- | :--- |
| 0.5 | 4.951129323264 | 4.951129323254130 | 19.774534178560 | 19.774534179208319 |
| 1.0 | 1.298459831928 | 1.298459832032056 | 5.075582014976 | 5.075582015226783 |
| 2.0 | 0.53746120921 | 0.537461209281675 | 1.764816438592 | 1.764816438780636 |
| 3.0 | 0.5003910828 | 0.500391082929748 | 1.506081527088 | 1.506081527252794 |
| 4.0 | 0.5000004907 | 0.500000490856430 | 1.5000146027 | 1.500014603007123 |
| 5.0 | 0.4999999999 | 0.500000000076717 | 1.5000000035 | 1.500000003671583 |
| 6.0 | 0.4999999998 | 0.500000000000001 | 1.499999999 | 1.500000000000001 |
| $a$ | $E_{2}[8]$ | $E_{2}$ (ours) | $E_{3}[8]$ | $E_{3}$ (ours) |
| 0.5 | 44.452073828864 | 44.452073829740951 | 78.996921150976 | 78.996921150747460 |
| 1.0 | 11.258825780608 | 11.258825781482910 | 19.8996964993 | 19.899696650183008 |
| 2.0 | 3.399788240 | 3.399788241107422 | 5.5846390781 | 5.584639079031242 |
| 3.0 | 2.541127258 | 2.541127259457090 | 3.664219644 | 3.664219645034898 |
| 4.0 | 2.5002011795 | 2.500201179960123 | 3.501691537 | 3.501691538523050 |
| 5.0 | 2.500000083 | 2.500000084018818 | 3.50000122 | 3.500001221456053 |
| 6.0 | 2.499999998 | 2.500000000003671 | 3.49999999 | 3.500000000080474 |
| $a$ | $E_{4}[8]$ | $E_{4}$ (ours) | $E_{5}[8]$ | $E_{5}$ (ours) |
| 0.5 | 123.410710456832 | 123.410710456255087 | 177.693843822080 | 177.693843818557778 |
| 1.0 | 31.00525450 | 31.005254506369600 | 44.5771712271 | 44.577171228133505 |
| 2.0 | 8.368874427 | 8.368874428255031 | 11.7649821209 | 11.764982122266749 |
| 3.0 | 4.954180470 | 4.954180470745735 | 6.473336615 | 6.473336616229402 |
| 4.0 | 4.509640989 | 4.509640990557537 | 5.539421796 | 5.539421797077043 |
| 5.0 | 4.50001263 | 4.500012637250637 | 5.50009871 | 5.500098717910283 |
| 6.0 | 4.5000000 | 4.500000001280182 | 5.5000001 | 5.500000015735293 |
| $a$ | $E_{15}[8]$ | $E_{15}$ (ours) | $E_{18}[8]$ | $E_{18}$ (ours) |
| 0.5 | 1263.350931234 | 1263.350931326357881 | 1781.505191022 | 1781.505191087087521 |
| 1.0 | 315.9936287 | 315.993628787720636 | 445.5322967 | 445.532296811001395 |
| 2.0 | 79.6230132 | 79.623013278512904 | 112.0078013 | 112.007801355885660 |
| 3.0 | 36.6009303 | 36.600930340754455 | 50.9915430 | 50.991543053598755 |
| 4.0 | 22.4717383 | 22.471738352379783 | 30.5488073 | 30.548807326817998 |
| 5.0 | 17.0786432 | 17.078643210603116 | 22.1777966 | 22.177796531345646 |
| 6.0 | 15.5795469 | 15.579546896354019 | 19.0082654 | 19.008265304869009 |
|  |  |  |  |  |

### 2.2. The asymmetric confinement

In order to solve equation (3) with the boundary conditions equation (5) with $a \neq b$, we will use a modified version of a numerical method based on the direct integration of the Schrödinger equation [16]. First, let us take equations (3) and (7) as a system of simultaneous coupled differential equations for $\psi$ and $\dot{\psi}=\partial \psi / \partial \epsilon$. With the following boundary conditions:

$$
\begin{equation*}
\psi(a)=0, \quad \psi^{\prime}(a)=1, \tag{15a}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{\psi}(a)=0, \quad \dot{\psi}^{\prime}(a)=0 \tag{15b}
\end{equation*}
$$

where $a$ is the position of the left wall of the box and the prime represents the derivative of the wavefunction with respect to $x$, taking $\psi^{\prime}(a)=1$ is completely arbitrary and does not have
any consequences in determining the eigenvalues. Later on, $\psi$ will be normalized to one. The process of numerical solution proceeds according to the following iteration scheme:
(i) Choose an initial value of $\epsilon_{i}$ and solve (3) and (7) using the Runge-Kutta method with an adjusted step-size of order 7,8 .
(ii) Now improve $\epsilon_{i}$, imposing the second boundary condition $\psi(b, \epsilon)=0$ using the NewtonRaphson method:

$$
\begin{equation*}
\epsilon_{i+1}=\epsilon_{i}-\frac{\psi\left(b, \epsilon_{i}\right)}{\dot{\psi}\left(b, \epsilon_{i}\right)} . \tag{16}
\end{equation*}
$$

(iii) Repeat step (ii) until $\left|\epsilon_{i+1}-\epsilon_{i}\right|<\delta$, where $\delta$ is equal to a maximum allowed tolerance.

In order to calculate another eigenvalue, we start the process in step (i) with a new guess for $\epsilon$, different enough from the one previously obtained in order to get convergence to a different eigenvalue. For each $\epsilon$ obtained, we identify the order of the corresponding state by counting the nodes of $\psi$. This procedure is particularly useful when we have several eigenvalues lying very close to each other. Once we have calculated the eigenvalue, the same iteration scheme also generates the values of the eigenfunction at a large number of points in $[a, b]$, which can be used to plot or to obtain expectation values of operators, etc. In this manner we can obtain, with a high degree of precision, the eigenvalues of any bounded potential, and even an accurate estimation of the eigenvalues of pseudo-bounded potentials. The energy eigenvalues for the symmetric confinement were calculated using this last method and also with those of section 2.1 ; we find them to be in complete agreement. In table 2 we compare results for the asymmetrical case with those reported by Vawter [14] and Fernández and Castro [15]. The results of Fernández and Castro [15] become less accurate when the asymmetry increases, as we can see from table 2. In table 3 we show our results for the first six states of the asymmetrically confined harmonic oscillator as a function of the box size. The walls of the box are displaced so that the ratio $b / a$ remains equal to 1.5 in all cases. We can observe that, as the size of the box increases, the eigenvalues approach those of the free harmonic oscillator, as expected.

## 3. Einstein coefficients

With the energy values and eigenfunctions calculated above we are now able to compute the Einstein $B$ coefficient for induced transitions in the dipolar approximation [26,27], which is given by

$$
\begin{equation*}
B_{m n}=\frac{2 \pi}{3 \hbar^{2}}\left|d_{m n}\right|^{2}, \tag{17}
\end{equation*}
$$

where $d_{m n}$ is the dipolar matrix element between the initial and final states $n$ and $m$, defined as

$$
\begin{equation*}
d_{m n}=e \int \psi_{m}^{*} x \psi_{n} \mathrm{~d} x \tag{18}
\end{equation*}
$$

Here, $e$ is the electronic charge. In the same approximation the Einstein $A$ coefficient for spontaneous transitions [26,27] is given by

$$
\begin{equation*}
A_{m n}=\frac{2 \hbar \omega_{m n}^{3}}{\pi c^{3}} B_{m n}=\frac{4 \omega_{m n}^{3}}{3 \hbar c^{3}}\left|d_{m n}\right|^{2} \tag{19}
\end{equation*}
$$

where $\omega_{m n}=\left(E_{m}-E_{n}\right) / \hbar$ is the radiation frequency for transitions from the initial state $n$ to the final state $m$. In general, the dipole matrix elements, and hence the Einstein coefficients, for the confined harmonic oscillator cannot be obtained analytically; however, there are two opposite limiting cases for which this is feasible, although in an approximate way: very small

Table 2. The energy eigenvalues for the ground state and three first excited states of an asymmetrically confined harmonic oscillator, obtained by the present method, and their comparison with those reported by Vawter [14] and Fernández and Castro [15]. The size of the box is $b-a=2$, $W_{n}=2 E_{n}$ (two times the energy) and $d=(b+a) / 2$ is the position of the minimum of the harmonic oscillator potential. These quantities were chosen to make a direct comparison with the results of [14] and [15].

| $d$ | $W_{1}[14]$ | $W_{1}[15]$ | $W_{1}$ (ours) | $W_{2}[14]$ | $W_{2}[15]$ | $W_{2}$ (ours) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.00 | 2.596 | 2.5969 | 2.59691966 | 10.15 | 10.151 | 10.15116403 |
| 0.12 | 2.610 | 2.610 | 2.61034621 | 10.16 | 10.167 | 10.16582921 |
| 0.24 | 2.651 | 2.650 | 2.65062665 | 10.21 | 10.21 | 10.20982396 |
| 0.36 | 2.718 | 2.717 | 2.71776341 | 10.28 | 10.28 | 10.28314602 |
| 0.48 | 2.812 | 2.811 | 2.81176041 | 10.38 | 10.39 | 10.38579150 |
| 0.60 | 2.933 | 2.932 | 2.93262332 | 10.52 | 10.52 | 10.51775519 |
| 0.72 | 3.080 | 3.080 | 3.08035913 | 10.68 | 10.68 | 10.67903019 |
| 0.84 | 3.255 | 3.253 | 3.25497639 | 10.87 | 10.87 | 10.86960820 |
| 0.96 | 3.456 | 3.454 | 3.45648534 | 11.09 | 11.09 | 11.08947978 |
| 1.08 | 3.685 | 3.681 | 3.68489748 | 11.34 | 11.34 | 11.33863401 |
| 1.20 | 3.940 |  | 3.94022544 | 11.62 |  | 11.61705838 |
| 1.56 | 4.868 |  | 4.86785207 | 12.63 |  | 12.62785207 |
| 1.92 | 6.038 |  | 6.03830195 | 13.90 |  | 13.90144582 |
| 2.04 | 6.482 |  | 6.48250177 | 14.38 |  | 14.38432367 |
| 2.64 | 9.110 |  | 9.10984706 | 17.23 |  | 17.23529572 |
| 2.88 | 10.35 |  | 10.35084739 | 18.58 |  | 18.57901521 |
| 3.00 | 11.01 |  | 11.01217154 | 19.29 |  | 19.29435469 |
| $d$ | $W_{3}[14]$ | $W_{3}[15]$ | $W_{3}$ (ours) | $W_{4}[14]$ | $W_{4}[15]$ | $W_{4}$ (ours) |
| 0.00 | 22.52 | 22.52 | 22.51765156 | 39.80 | 39.80 | 39.79939300 |
| 0.12 | 22.53 | 22.53 | 22.53222905 | 39.81 | 39.81 | 39.81390315 |
| 0.24 | 22.57 | 22.58 | 22.57596148 | 39.86 | 39.86 | 39.85743358 |
| 0.36 | 22.65 | 22.65 | 22.64884877 | 39.93 | 39.93 | 39.92998431 |
| 0.48 | 22.75 | 22.75 | 22.75089070 | 40.03 | 40.03 | 40.03155528 |
| 0.60 | 22.88 | 22.87 | 22.88208716 | 40.16 | 40.16 | 40.16214658 |
| 0.72 | 23.04 | 23.04 | 23.04243775 | 40.32 | 40.32 | 40.32175811 |
| 0.84 | 23.23 | 23.23 | 23.23194206 | 40.51 | 40.51 | 40.51038977 |
| 0.96 | 23.48 | 23.43 | 23.45059983 | 40.73 | 40.73 | 40.72804174 |
| 1.08 | 23.70 | 23.70 | 23.69841063 | 40.97 | 40.97 | 40.97471403 |
| 1.20 | 23.97 |  | 23.97537365 | 41.25 |  | 41.25040638 |
| 1.56 | 24.98 |  | 24.98116971 | 42.25 |  | 42.25160378 |
| 1.92 | 26.25 |  | 26.24931024 | 43.51 |  | 43.51398176 |
| 2.04 | 26.73 |  | 26.73031802 | 43.99 |  | 43.99281427 |
| 2.40 | 28.35 |  | 28.34820879 | 45.60 |  | 45.60343123 |
| 2.64 | 29.57 |  | 29.57251149 | 46.82 |  | 46.82227395 |
| 2.88 | 30.91 |  | 30.91336772 | 48.16 |  | 48.15719472 |
| 3.00 | 31.63 |  | 31.62749854 | 48.86 |  | 48.86818346 |
|  |  |  |  |  |  |  |

(free particle in a box) and very large boxes (unbounded harmonic oscillator). For very small boxes $(R \rightarrow 0)$ we recover the behaviour of a free particle in a box, being the dipole matrix elements of this system given by

$$
\begin{equation*}
\left|d_{m n}\right|=\frac{8 e R}{\pi^{2}} \frac{m n}{\left(m^{2}-n^{2}\right)^{2}}\left|(-1)^{n-m}-1\right| . \tag{20}
\end{equation*}
$$

The selection rules in this case establish that the transitions are only possible when $\Delta n=$ $m-n=$ odd, i.e. that the transitions are only allowed between first, third, etc neighbours, in

Table 3. Energy eigenvalues for the ground state and the first five excited states of an asymmetrically confined harmonic oscillator. The walls of the box are located at $x=a$ and $b$. The length unit is $\sqrt{\hbar / m \omega}$ and the energy unit is $\hbar \omega$.

| $a$ | $b$ |  |  |  |
| :--- | :--- | ---: | ---: | ---: |
| -0.40 | 0.6 | 4.956107430509850 | 19.779540672522745 | 44.457077725690018 |
|  |  | 79.001923538860975 | 123.415712042565422 | 177.698844941942980 |
| -0.48 | 0.72 | 3.457577547425262 | 13.765858189778583 | 30.905677993095790 |
|  |  | 54.896070185086711 | 85.739400962186841 | 123.436249789676923 |
| -0.64 | 0.96 | 1.981761162348153 | 7.813841869877837 | 17.461270959890426 |
|  |  | 30.958008119516358 | 48.308360546469642 | 69.513366236762503 |
| -0.80 | 1.20 | 1.317107979433359 | 5.095950157502384 | 11.279072284988040 |
|  |  | 19.919849480543796 | 31.025356298644810 | 44.597243310855157 |
| -1.28 | 1.92 | 0.672627870568576 | 2.333779793391920 | 4.791367580358017 |
|  |  | 8.177296991112514 | 12.519179402879797 | 17.822460577169699 |
| -1.60 | 2.40 | 0.565770255446033 | 1.838819613302878 | 3.489952647379795 |
|  |  | 5.674005587304844 | 8.455573969729765 | 11.849773130644206 |
| -3.00 | 4.50 | 0.500195415964895 | 1.503020303422310 | 2.519913654479166 |
|  |  | 3.575115229805945 | 4.691640820487011 | 5.877825839810553 |
| -4.00 | 6.00 | 0.500000245427974 | 1.500007301347236 | 2.500100566198534 |
|  |  | 3.500844396862557 | 4.504784483376225 | 5.519238717316811 |

agreement with the Laporte rule which states that, in a dipolar transition, the parity of the final state must be different from that of the initial one. On the other hand, for very large boxes $(R \rightarrow \infty)$ the free harmonic oscillator behaviour is recovered and the dipole matrix elements are then [26]

$$
\left|d_{m n}\right|= \begin{cases}e \sqrt{\frac{n+1}{2}} & \text { if } m=n+1  \tag{21}\\ e \sqrt{\frac{n}{2}}, & \text { if } m=n-1 \\ 0 & \text { otherwise }\end{cases}
$$

In this case, the selection rules establish that $\Delta n=m-n= \pm 1$, i.e. the transitions are allowed only between first neighbours. In order to calculate the $A$ and $B$ coefficients, equations (17) and (19) respectively, we use the energy eigenvalues and the eigenfunctions obtained in the preceding section to compute the required dipole matrix elements (18). The Einstein A coefficients for the symmetrical and asymmetrical cases are shown in table 4, whereas in table 5 we show the $B$ coefficients for different box sizes. In table 4 we present results for three cases of symmetrical confinement; the others describe asymmetrical confinements. In the symmetrical cases the Laporte rule is satisfied; however, the selection rules for the confined harmonic oscillator are different from those of the free case. For example, the coefficient $A_{14}$ is different from zero in the confined case but vanishes for the unbounded harmonic oscillator. From table 4 we can detect other coefficients different from zero in the confined case and identically zero in the unbounded case. Note that the value of these coefficients diminishes quite quickly when the box size increases. Similar conclusions are obtained for the $B$ coefficients as we can see from table 5. These observation are in agreement with those first obtained using perturbation theory [11], but now, given that our accuracy is much higher, we can study larger parameter regions than those allowed by perturbation theory. In table 4 are also shown the coefficients for the asymmetric confinement as a function of the position of the walls. Note that $A_{31}, A_{51}, A_{42}$, as well as others, are different from zero in apparent violation of the Laporte rule. The violation of the Laporte rule is only apparent, since in the case of asymmetrical

Table 4. Einstein $A_{n}$ coefficients for a confined harmonic oscillator. The minimum of the harmonic oscillator potential is at the origin and the walls of the box are located at $x=a$ and $x=b$. The Einstein $A_{n}$ coefficients are given in units of $4 \omega^{4} e^{2} / 3 m c^{3}$.

| $(a, b)$ | $(-0.5,0.5)$ | $(-0.4,0.6)$ | $(-1.0,1.0)$ | $(-0.8,1.2)$ | $(-2.4,0)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $A_{21}$ | 105.564593 | 105.564876 | 6.871390 | 6.875814 | 3.688705 |
| $A_{31}$ | 0.000000 | 0.000700 | 0.000000 | 0.010372 | 0.462733 |
| $A_{41}$ | 83.903350 | 83.903591 | 4.954881 | 4.958535 | 2.413204 |
| $A_{51}$ | 0.000000 | 0.000567 | 0.000000 | 0.008330 | 0.371075 |
| $A_{61}$ | 80.919567 | 80.919784 | 4.790460 | 4.793762 | 2.329297 |
| $A_{32}$ | 568.761161 | 568.760679 | 35.808245 | 35.801382 | 17.139700 |
| $A_{42}$ | 0.000000 | 0.000264 | 0.000000 | 0.004449 | 0.243432 |
| $A_{52}$ | 375.239280 | 375.238936 | 22.761715 | 22.756934 | 10.415362 |
| $A_{62}$ | 0.000000 | 0.000176 | 0.000000 | 0.002972 | 0.163441 |
| $A_{43}$ | 1624.673715 | 1624.673378 | 101.931787 | 101.926398 | 49.093306 |
| $A_{53}$ | 0.0000000 | 0.000162 | 0.000000 | 0.002681 | 0.143890 |
| $A_{63}$ | 946.526396 | 946.526195 | 58.261449 | 58.258266 | 27.440096 |
| $A_{54}$ | 3509.767604 | 3509.767353 | 219.895853 | 219.891805 | 106.125360 |
| $A_{64}$ | 0.000000 | 0.000119 | 0.000000 | 0.001936 | 0.102419 |
| $A_{65}$ | 6460.834064 | 6460.833865 | 404.482654 | 404.479443 | 195.267172 |
| $(a, b)$ | $(-2.0,2.0)$ | $(-1.6,2.4)$ | $(-4.0,0.0)$ | $(-4.0,0.2)$ | $(-4.4,-0.2)$ |
| $A_{21}$ | 0.743447 | 0.787811 | 1.702856 | 1.532642 | 1.876490 |
| $A_{31}$ | 0.000000 | 0.047738 | 0.702656 | 0.590925 | 0.794185 |
| $A_{41}$ | 0.123109 | 0.145751 | 0.590267 | 0.479277 | 0.624405 |
| $A_{51}$ | 0.000000 | 0.035588 | 0.560778 | 0.455312 | 0.594725 |
| $A_{61}$ | 0.126741 | 0.147708 | 0.576727 | 0.466177 | 0.604616 |
| $A_{32}$ | 2.585014 | 2.597996 | 3.363705 | 3.057412 | 3.472387 |
| $A_{42}$ | 0.000000 | 0.083379 | 1.257589 | 1.113526 | 1.393628 |
| $A_{52}$ | 0.857156 | 0.867001 | 1.243963 | 1.029093 | 1.196147 |
| $A_{62}$ | 0.000000 | 0.054965 | 0.901446 | 0.796927 | 1.012269 |
| $A_{43}$ | 6.744958 | 6.688467 | 6.302474 | 5.431427 | 5.651035 |
| $A_{53}$ | 0.000000 | 0.060891 | 1.371624 | 1.335117 | 1.788117 |
| $A_{63}$ | 2.766779 | 2.739290 | 2.547740 | 2.033995 | 2.122980 |
| $A_{54}$ | 14.230077 | 14.162383 | 12.888061 | 10.599708 | 10.328312 |
| $A_{64}$ | 0.000000 | 0.040198 | 1.036044 | 1.075700 | 1.566828 |
| $A_{65}$ | 25.910391 | 25.853028 | 24.523389 | 20.053596 | 19.491765 |
|  |  |  |  |  |  |

confinement the oscillator states do not have well defined parities. This type of confinement leads to the appearance of transitions that were forbidden before, thus increasing the number of nonzero Einstein coefficients. In figure 1 we show the Einstein coefficients $A_{24}$ and $B_{24}$ as a function of the box size and of the asymmetry parameter $d$. These coefficients are identically equal to zero for $d=0$, in agreement with the Laporte rule. This fact is clearly observed from figures $1(a)$ and $(b)$. For $d \neq 0$ these coefficients can be small but they are not necessarily zero, as we can see from figure $1(a)$ and $(b)$ and from tables 4 and 5. It is easy to observe increasing values of $A_{24}$ and $B_{24}$ as $R$ and $d$ increase. This fact can also be appreciated from tables 4 and 5 . In this way we see that the complexity of the emission and the absorption spectra is considerably increased by the confinement to the inside of a quantum box.

## 4. Conclusions

We have studied in this work the energy spectrum and the Einstein $A$ and $B$ coefficients for a symmetrical and asymmetrical confined one-dimensional harmonic oscillator. We have

Table 5. Einstein $B_{n}$ coefficients for a confined harmonic oscillator. The minimum of the harmonic oscillator potential is at the origin and the walls of the box are located at $x=a$ and $b$. The $B_{n}$ coefficients are in units of $2 \pi e^{2} / 3 m \hbar \omega$.

| $(a, b)$ | $(-0.5,0.5)$ | $(-1.0,1.0)$ | $(-2.0,2.0)$ | $(-0.4,0.6)$ | $(-0.8,1.2)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $B_{21}$ | 0.032409652 | 0.127515080 | 0.402105072 | 0.032409552 | 0.127423014 |
| $B_{31}$ | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000011 | 0.000010491 |
| $B_{41}$ | 0.000206670 | 0.000769853 | 0.000957513 | 0.000206670 | 0.000770233 |
| $B_{51}$ | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000317 |
| $B_{61}$ | 0.000015698 | 0.000059095 | 0.000089550 | 0.000015698 | 0.000059130 |
| $B_{32}$ | 0.037846381 | 0.151472551 | 0.591469298 | 0.037846360 | 0.151452455 |
| $B_{42}$ | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000001 | 0.000001366 |
| $B_{52}$ | 0.000337111 | 0.001305611 | 0.002975962 | 0.000337111 | 0.001305377 |
| $B_{62}$ | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000048 |
| $B_{43}$ | 0.039410897 | 0.157992735 | 0.646716479 | 0.039410894 | 0.157989512 |
| $B_{53}$ | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000348 |
| $B_{63}$ | 0.000400139 | 0.001575182 | 0.004726574 | 0.000400139 | 0.001575121 |
| $B_{54}$ | 0.040061285 | 0.160544668 | 0.659309650 | 0.040061284 | 0.160543932 |
| $B_{64}$ | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000128 |
| $B_{65}$ | 0.040391860 | 0.161799190 | 0.661499650 | 0.040391860 | 0.161798968 |
| $(a, b)$ | $(-2.4,0.0)$ | $(-1.6,2.4)$ | $(-4.0,0.0)$ | $(-4.0,0.2)$ | $(-4.4,-0.2)$ |
| $B_{21}$ | 0.168572771 | 0.381844581 | 0.212322553 | 0.227542683 | 0.198773948 |
| $B_{31}$ | 0.001293484 | 0.001909225 | 0.010660805 | 0.010556679 | 0.010656951 |
| $B_{41}$ | 0.001074267 | 0.001093450 | 0.002367762 | 0.002306881 | 0.002398302 |
| $B_{51}$ | 0.000041195 | 0.001093450 | 0.000760673 | 0.000763894 | 0.000848448 |
| $B_{61}$ | 0.000084313 | 0.000102805 | 0.000303600 | 0.000310594 | 0.000358872 |
| $B_{32}$ | 0.215294552 | 0.577154868 | 0.397537319 | 0.420831386 | 0.377783869 |
| $B_{42}$ | 0.000222798 | 0.001478083 | 0.015906082 | 0.016960459 | 0.017876230 |
| $B_{52}$ | 0.001783021 | 0.002992848 | 0.003577438 | 0.003700623 | 0.003855609 |
| $B_{62}$ | 0.000007916 | 0.000054785 | 0.000805292 | 0.000911837 | 0.001080269 |
| $B_{43}$ | 0.227536552 | 0.642003083 | 0.550174374 | 0.588681843 | 0.547565541 |
| $B_{53}$ | 0.000055863 | 0.000497320 | 0.011010854 | 0.013802732 | 0.017501833 |
| $B_{63}$ | 0.002217075 | 0.004688644 | 0.004383409 | 0.004589608 | 0.004666786 |
| $B_{54}$ | 0.231552924 | 0.658062469 | 0.626518074 | 0.684090232 | 0.662848459 |
| $B_{64}$ | 0.000020362 | 0.000170663 | 0.004584373 | 0.006372028 | 0.009347504 |
| $B_{65}$ | 0.233335958 | 0.661149168 | 0.651628038 | 0.718218878 | 0.710491753 |
|  |  |  |  |  |  |

used methods that produce high-precision energy eigenvalues and eigenfunctions. The energy eigenvalues that we obtained for the confined oscillator are compared with those reported in the literature $[8,13-15]$, showing that some energy values considered as exact ones are only good approximations, and that the values calculated here are far more accurate. The values obtained by the methods described in this paper can then be used as a reference for future calculations.

For a confined oscillator we found that the selection rules of the unbounded oscillator are not satisfied. In the symmetrical confinement the states of the oscillator have definite parity and the Laporte rule is satisfied. However, coefficients like $A_{61}$ are different from zero, while this coefficient is zero for the unbounded harmonic oscillator. In the asymmetrical confinement, the wavefunctions do not have definite parity, and the Laporte rule does not apply. The Einstein $A$ and $B$ coefficients for this problem are, in general, different from zero, showing that this type of confinement introduces a complexity in the emission or absorption spectra.

Although this is a very simple model, some of the qualitative features will be preserved when more complex systems are considered, so we can expect in general an increase in the


Figure 1. The Einstein coefficients $A_{24}$ and $B_{24}$ as a function of the box size and the asymmetry parameter $d$. $A_{24}$ is given in units of $4 \omega^{4} e^{2} / 3 m c^{3}$, whereas $B_{24}$ is in units of $2 \pi e^{2} / 3 m \hbar \omega$. These coefficients are identical to zero for symmetric confinement $d=0$, and they are small for small boxes, but they grow as a function of $R$ and $d$.
(This figure is in colour only in the electronic version)
number of nonzero Einstein coefficients in a system, when we submit it to confinement. This would be of great technological interest, since devices emitting or absorbing radiation in selected frequencies could be produced and the frequencies involved would be regulated by adjusting the size of the system confinement.

We must mention that the way in which we introduced the spatial confinement is not the only one: two different approaches were developed by other authors [28,29], and in some limiting case their confinement is equivalent to that used here.

## Acknowledgments

The authors thank E Castaño, F M Fernández and an anonymous referee for suggestions that improved this work.

## References

[1] We refer the reader to the reviews:
Fernández F M and Castro E A 1982 Kinam 4193
Fröman P O, Yngve S and Fröman R 1987 J. Math. Phys. 281813
Jaskólski W 1996 Phys. Rep. 2711
The latter contains recent applications on solid state physics and condensed matter
[2] Bhattacharya K and Mukhopadhyay 2001 J. Phys. A: Math. Gen. 341529
[3] Kotari D S and Auluck F C 1940 Sci. Cult. 6370
[4] Auluck F C 1941 Proc. Natl Inst. Sci. India 7133
[5] Chandrasekhar S 1943 Astrophys. J. 97263
[6] Dingle R B 1952 Proc. R. Soc. A 21247
[7] Korson E M and Kaplan I 1947 Phys. Rev. 71130
[8] Aguilera-Navarro V C, Ley-Koo E, and Zimerman H A 1980 J. Phys. A: Math. Gen. 133585
[9] Baijal J S and Singh K K 1955 Prog. Theor. Phys. 14214
10] Aquino N and Granados V 1998 Memorias del $7^{\circ}$ Coloquio de Investigación ESFM, IPN, México DF 314
[11] Aquino N, Castaño E, Campoy G and Granados V 2001 Eur. J. Phys 22645
[12] Fernández F M, unpublished Perturbation theory applied to other confined problems are found in Fernández F M 1993 Phys. Rev. A 48189 Fernández F M and Castro E A 1993 J. Math. Phys. 343670 Fernández F M and Castro E A 1993 J. Chem. Phys. 986392 Fernández F M 1999 Int. J. Math. Educ. Sci. Technol. 30405

Fernández F M 2001 Introduction to Perturbation Theory in Quantum Mechanics (Boca Raton, FL: Chemical Rubber Company Press)
[13] Vargas R, Garza J and Vela A 1996 Phys. Rev. E 531954
[14] Vawter R 1968 Phys. Rev. 174749
[15] Fernández F M and Castro E 1981 Int. J. Quantum Chem. 20623
[16] Rivas-Silva J F, Campoy G and Palma A 1991 Int. J. Quantum Chem. 40405
[17] Campoy G and Palma A 1986 Int. J. Quantum. Chem: Quantum Chem. Symp. 2033
[18] Palma A and Campoy G 1987 Phys. Lett. A 121221
[19] Aquino N 1995 Int. J. Quantum. Chem. 54107
[20] Aquino N 1997 J. Phys. A: Math. Gen. 302403
[21] Aquino N 1997 Doctoral Thesis Universidad Autónoma Metropolitana, México DF
[22] Aquino N, Campoy G and Yee-Madeira H 1998 Chem. Phys. Lett. 296111
[23] Aquino N, Campoy G and Yee-Madeira H 1998 Libro de Resumenes del 24th Congreso Int. de Químicos Teóricos de Expresión Latina (Benemérita Universidad Autónoma de Puebla, Puebla, México) p 75
[24] Press W H, Flannery B P, Teukolsky S A and Vetterling W T 1986 Numerical Recipes: The Art of Scientific Computing (Cambridge: Cambridge University Press)
[25] Dorn W S and McCracken D D 1972 Numerical Methods with Fortran: IV. Case Studies (New York: Wiley)
[26] Powell J L and Crasemann B 1961 Quantum Mechanics (Reading, MA: Addison-Wesley) p 425
[27] Griffits D J 1995 Introduction to Quantum Mechanics (Englewood Cliffs, NJ: Prentice-Hall) p 311
[28] Zichovich-Wilson C, Planelles J H and Jaskólski W 1994 Int. J. Quantum. Chem 50429
[29] Costa L S, Prudente F V, Acioli P H, Soares Neto J J and Vianna D M 1999 J. Phys. B: At. Mol. Opt. Phys. 32 2461

